excess sodium nitrite. The solution was stirred for 1 hr. in the cold and 3.3 g. of mercuric bromide and 4.0 g. of potassium bromide in 20 ml. of water was added with swirling. The mixture was allowed to stand at ice temperature for $\bar{1}$ hr. and the brown precipitate was filtered off, washed well with water, and air dried to yield 1.36 g. (120% based on the formula $C_{16}H_9$ - $BrN_2·HgBr_2$ for the salt) of brown powder.

The dry powder waa mixed thoroughly with 4 g. of dry potassium bromide in a 50-ml. flask and the mixture was heated in an oil bath at 120' for 0.5 hr. During the heating, the darkening mass became spongy due to gas evolution. The solid was then digested with hot water and extracted with 200 ml. of hot benzene in five portions. The benzene extracts were washed successively with dilute hydrochloric acid, dilute potassium carbonate, and water, and dried over anhydrous magnesium sulfate. Removal of the solvent yielded a small amount of red oil which was eluted from a 6×0.5 in. column of activity I neutral alumina (Woelm) with hexane and benzene-hexane (50:50 v./v.) to give 184 mg. of white solid, m.p. 112-118'.

Anal. Calcd. for C₁₆H₉Br: C, 68.33; H, 3.20; Br, 28.47. Found: C, 66.72; H, 3.34; Br, 26.83.

A portion of this material was purified via the orange picrate, m.p. 150-155°, to give, after recrystallization from petroleum ether, colorless needles, micro m.p. (K) 132-133°. The polarographic reduction and ultraviolet spectrum were taken on this material but there was insufficient pure sample for a second elemental analysis. The mother liquor of the final crystallization gave white needles on concentration, m.p. 130°.

Anal. Found: C, 67.40; H, 3.4.

A second portion of the original material was recrystallized from petroleum ether to give tan crystals, m.p. 126-131". Thin layer chromatography on silica gel showed two fluorescent spots. Chromatography on a small silica gel column and elution with cyclohexane and methylene chloride gave a yellow first fraction of wide melting range and a second fraction of white crystals, m.p. 131-132.5". This product was too small for analysis but thin layer chromatography showed a single fluorescent spot on silica gel.

These experiments suggest the use of successive column chromatography on alumina and on silica gel in subsequent preparations.

A second attempt at preparing this compound under closely similar reaction conditions gave only high-melting yellow solid and failed to yield any material melting below 170" which could be eluted from an alumina column.

The somewhat impure 2-bromopyrene (44 mg., 0.16 mmole), obtained above after chromatography of the reaction mixture, was converted to 2-pyrenyllithium with 1 *.O* mmole of n-butyllithium in ether. Tritiated water $(25 \mu l., 1.4 \text{ mmoles}, 1 \text{ c./ml.})$ waa then added with stirring, followed by 12.0 g. (59.5 mmoles) of pyrene. The ether solution waa washed with water and dried over anhydrous magnesium sulfate. The pyrene remaining after removal of the ether waa recrystallized from absolute ethanol to give, on two successive recrystallizations, pyrene of specific tritium activity 3.35 \times 10⁷ and 3.41 \times 10⁷ d.p.m./mmole (calcd. on basis of tritiated water: 5.3×10^7 d.p.m./mmole). The second recrystallization gave 7.70 g. (64%) of white plates, m.p. 149-150°.

Acknowledgment.—We are indebted to Dr. Irving Schwager for the polarographic measurements.

Synthesis of Stilbenes. A Comparative Study'

OWEN H. WHEELER AND HILDA N. **BATLLE DE PABON**

Department **of** Chemistry and Puerto Rico Nuclear Center, University of Puerto Rico at Mayaguez, Mayaguez, Puerto *Riw*

Received September 8, *1964*

A number of commonly accepted general methods for the synthesis of trans- and cis-stilbenes are shown to be of limited use. The best methods of preparing these isomers are via the Wittig reaction and the decarboxylation of phenylcinnamic acids, respectively, although neither method gave exclusively one isomer. The structures were confirmed by ultraviolet, infrared, and n.m.r. spectra.

The trans- and cis-stilbenes form an interesting group of compounds for the study of the transmission of substituent effects from one benzene ring to another through a double bond.² A number of methods are commonly reported3 for the synthesis of stilbenes from compounds containing one benzene ring. These include (A) the condensation of benzaldehydes to benzoins followed by a Clemmensen reduction,⁴ (B) the dehydration of 1,2-diarylethanol formed by reaction of benzaldehydes with benzylmagnesium halides.⁵ (C) the Meerwein reaction of cinnamic acids with benzenediazonium salts, $6,7$ and (D) the decarboxylation of phenylcinnamic acids formed by the reaction of

(3) 9. H. Harper, "Chemistry of Carbon Compounds." Vol. 3, E. H. Rodd, Ed.. Elsevier Publishing Corp., New York. N. Y., 1956, Chapter 18.

(4) (a) D. A. Ballard and W. M. Dehn, *J. Am. Chcm. Soc.,* **64, 3969 (1932); (b) R. L. Shriner and A. Burger, "Organic Syntheses," Coll. Vol. 111, John Wiley and Sons, Inc., New York, N.** *Y.,* **1955, p. 786.**

(5) E. **C. Dodds,** L. **Goldberg, W. Lawson, and R. Robinson,** *Proc. Roy. SOC.* **(London), B127, 140 (1939).**

(6) H. Meerwein, E. Bllchner, and K. **Van Emster.** *J. prakl. Chem.,* **164, 237 (1939).**

(7) (a) F. **Bergmann and D. Schapiro,** *J.* **Org.** *Chem.,* **12, 57 (1947); (b) p. L'Ecuyer,** F. **Turcotte, J. Giguere, C. A. Olivier, and P. Roberge,** *Can. J. Chem..* **46,** *70* **(1948).**

benzaldehydes with phenylacetic acids.⁸ Other methods such as the direct condensation of benzaldehydes with toluenes⁹ and the oxidative coupling of toluenes¹⁰ are only applicable when the methyl group of the toluene is activated by one or more nitro groups.

Although method **B** has been widely used to prepare stilbesterol derivatives,⁵ it is limited to the use of those benzyl halides which form Grignard derivatives, and to benzaldehydes with substituents that do not react with the Grignard reagent. Method **C** generally gives very poor yields $(<20\%)$.¹¹ The benzoin and phenylcinnamic acid routes (methods A and D) would seem to be general, and the latter is the only route which leads directly to cis-stilbenes. In a modification of this method using piperidine as the condensing reagent, trans-stilbenes are reported to be formed directly.12 This latter method also leads to unsymmetrically substituted stilbenes, which is not the case with the benzoin route.

⁽¹⁾ The Puerto Rico Nuclear Center is operated under Contract No. AT- (40-1)-1833 by the University of Puerto Rico for the Atomic Energy Commission.

^{(2) (}a) R. N. Beale and E. M. F. **Roe,** *J. Am. Chem. Soc.,* **74, 2302 (1952); (b)** *G.* **Riezebos and** E. **Havinga,** *Rec. trau. cham., 80,* **446 (1961); (c) H. H. Jaff6 and M. Orchin,** *J. Chem. Soc.,* **1078 (1960).**

⁽⁸⁾ **(a) T. W. Taylor and C.** E. **J. Crawford.** *J. Chem. Soc.,* **1130 (1934); (b) R. E. Buckles and N.** *G.* **Wheeler,** *Oro.* **Syn., 88, 88 (1953).**

⁽⁹⁾ *G.* **Bishop and 0.** L. **Brady,** *J. Chcm. Soc.,* **121, 2366 (1922);** K. **R. Hargreaves and A. McGookin,** *J. Sac. Chem.* **Ind. (London), 69,** 186 (1950)

⁽IO) *Cf.* **G. R. Treves,** *J. Am. Chem. Sac., 70,* **875 (1948).**

^{(11) (}a) J. I. **G. Cadogan, E.** *G.* **Duell, and P. W. Inward.** *J. Chem. Soc.;* **4164 (1962); (b)** *0.* **H. Wheeler and** C. B. **Covarrubias, unpublished observations.**

⁽¹²⁾ P. Pfeiffer and *S.* **Sergiewskaja.** *Ber.,* **44, 1107 (1911).**

This publication reports a comparative study of these various general routes to substituted trans- and cis-stilbenes, except that employing Grignard reagents.

Method A.-The reaction of 2- and 4-chlorobenzaldehyde with potassium cyanide in methanol was found in the present work to give 2,2'- and 4,4'-dichlorobenzils characterized by their melting points and ultraviolet spectra, and not the corresponding benzoins. No product could be isolated from an attempted benzoin reaction with $2,4$ -dichlorobenzaldehyde. 4 -Cyanobenzaldehyde16 and **3,5-dimethyl-4-nitrobenzaldehyde1'** have previously been shown to give desoxybenzoins. Here, reduction of the crude benzoin reaction product from 4-chlorobenzaldehyde, however, gave $trans-4.4'$ dichlorostilbene, although no stilbenes were obtained by reducing the reaction products from 2-chloro- and **2,4** dichlorobenzaldehyde.

The reduction of anisoin $(4,4'-d)$ imethoxybenzoin) under the normal conditions (amalgamated zinc in hydrochloric acid) was found to give a small yield of 1,2 **di(4-methoxyphenyl)ethane,** with much unreacted anisoin due to its low solubility. Reduction with zinc amalgam in 50% acetic-hydrochloric acid gave desoxyanisoin, as did reduction with zinc dust in boiling acetic acid.

A recent method1* of reducing benzoin to trans-stilbene involves preparing desyl chloride (PhCHC1-CO. Ph) which is then reduced with sodium borohydride. Here the application of this method to anisoin, however, led to the formation of desoxyanisoin. The reduction of desyl chloride with deteriorated sodium borohydride has been reported¹⁸ to give desoxybenzoin, but fresh samples of hydride gave the same results in the present case with anisoin.

Although the reduction of benzoin is the preferred method of preparing trans-stilbene itself. this method seems of limited use in synthesizing substituted transstilbenes.

Method C.-The reaction of 4-nitrocinnamic acid with diazotized 4-nitroaniline afforded trans-4,4-dinitrostilbene in 39% yield. Generally this method gives poorer yields¹¹ of impure product, as would be expected for a reaction involving free radicals. Moreover, the necessary substituted cinnamic acids must be themselves synthesized from benzaldehydes.

Method D.--The decarboxylation of a phenylcinnamic acid would seem to be the most attractive route to cis-stilbenes, which can be isomerized to the trans

isomer.^{11a,19} The direct route to a *trans*-stilbene using piperidine for the condensation and decarboxylation was found in the present work to be limited to the reaction of 4-nitrophenylacetic acid, since phenylacetic acid and 2-nitro-, 4-chloro-, and 2-chlorophenylacetic acid did not react with benzaldehyde, and no reaction occurred between 2-chlorophenylacetic acid and 2 chlorobenzaldehyde. A recent publication²⁰ has shown that the reaction with 4-nitrophenylacetic acid involves direct decarboxylation of 4-nitrophenyl-trans-cinnamic acid to the trans-stilbene, by a carbanion mechanism.

The decarboxylation of phenylcinnamic acid is usually carried out in quinoline (b.p. 230°) in the presence of copper chromite,^{8a} when cis-stilbene is the only product. In our hands it proved difficult to remove the last traces of quinoline from the product, particularly when small amounts of material were involved, and other solvents were investigated. No decarboxylation occurred in dimethylaniline (b.p. 192'), and reaction in dimethyl sulfoxide (b.p. 120') gave about equal amounts of cis- and trans-stilbene in low yield. However, decarboxylation in collidine (b.p. 175°) gave largely trans-stilbenes (85%) with some cis-stilbene (15%) . That the *trans*-stilbene was not formed by isomerization of the cis isomer was shown by the fact that the *cis*-stilbene was recovered unchanged (in 90% yield) on refluxing with copper chromite in collidine for 16 hr.

A number of substituted cis - α , β -diphenylacrylic acids $(trans-\alpha-\text{phenylcinnamic acids})$ were then prepared by condensation of the appropriate phenylacetic acid and benzaldehyde (see Table I). Decarboxylation

TABLE I

		PHYSICAL CONSTANTS OF DIPHENYLACRYLIC ACIDS
Compd.	M.p., ^a °C.	λ_{max}^b mu (e)
α .8-Diphenylacrylic		
acid	$172(172^c)$	277 (10.950) [274 (14.000) ^d]
α -4-Methyl-	168(173)	276 (14.200) [282 (16.200) ^e]
α -4-Methoxy-	$156 - 158$ (158-159 ^f)	270 (13,000) [272 (13.680) ^e]
α -4-Fluoro-	$167 - 1689$	277 (13.700)
α -4-Chloro-	$182 - 183$ $(180 - 181^d)$	282 (15,600) [282 (13,500) ^d]
α -2-Methoxy-	$136 - 137h$	273 (16,000)
α -2-Chloro-	$165 - 168$	275 (19,150)
α .8-4.4'-Dichloro-	$153 - 155'$	286 (19,000)
α -2.4-Dichloro-	$155 - 156^k$	280 (13.700)

^{*a*} Literature values in parenthesis. δ Literature values in brackets. Data refer to 95% ethanol solution. ^{*c*} Ref. 33.
^{*d*} Ref. 21. *^{<i>e*} Ref. 11a. ^{*f*} C. D. Gutsche, E. F. Jason, R. S. Coffey, and H. E. Johnson, *J. Am. Chem. Soc.,* **80, 5726 (1958).** *0 Anal.* Calcd. for ClsH,1FO2: C, **74.38;** H, **4.55.** Found: C, **74.26;** H, **4.65.** *Anal.* Calcd. for ClsHl4Oa: C, **75.57;** H, **5.55.** Found: C, **75.28;** H, **5.41.** *Anal.* Calcd. for C15HllC102: C, **69.64;** H, **4.29.** Found: C, **69.92;** H, **4.45.** *1 Anal.* Calcd. for C15H10C1202: C, **61.64;** H, **3.42.** Found: C , **61.91**; H, 3.76. *<i>k* Anal. Calcd. for $C_{15}H_{10}Cl_2O_2$: *C*, **61.64**; H, **3.42.** Found: C, **61.69;** H, **3.38.**

was carried out in quinoline with the copper chromite catalyst. The α -4-methyl, α -4-fluoro, and α -2-methoxy acids gave exclusively the 4-substituted cis-stilbenes (see Table II). However, α -4-methoxyphenylcinnamic acid gave predominately the trans-4-methoxystilbene and the isomeric β -4-methoxy acid gave exclusively this isomer. α -4-Chlorophenylcinnamic acid afforded a low yield (5%) of cis-stilbene; it has been

⁽¹³⁾ (a) *G.* **Wittig and U. Schollkopf,** *Ber.,* **87, 1318 (1954);** (b) **G. Wittig and W. Haag,** *ibid.,* **88, 1654 (1955);** *(c) cf.* S. **Trippett.** *Quart. Rev.* **(London), 17, 406 (1933).**

^{(14) (}a) L. Horner, H. Hoffmann, H. *G.* **Wippel, and** *G.* **Kluke,** *Ber.,* **94, 2499 (1959); (b) L. D. Bergel'son, V. A. Vaver, L. J. Barsukov. and M. M. Shemyakin,** *Dokl. Akod. Nauk. SSSR,* **148, 111 (1962):** *cf,* **L. D. Bergel'son and M. M. Shemyakin,** *Tefrahedron,* **19, 149 (1963).**

⁽¹⁵⁾ W. *S.* **Wadaworth. Jr., and W. D. Emmons, J.** *Am. Chem. Soc.,* **88, 1733 (1961).**

⁽¹⁶⁾ J. N. Ashley. H. J. Barber, A. J. Ewina, *G.* **Newberry, and A. D. H. Self,** *J. Chem. Soc.,* **103 (1942).**

⁽¹⁷⁾ R. F. Stockel, *Chem. Ind.* **(London), 613 (1963).**

⁽¹⁸⁾ L. F. Fieaer and Y. Okumura, *J. Org. Chem..* **97, 2247 (196a.**

⁽¹⁹⁾ D. F. de Tar and L, A. Carpino, *J. Am. Chem. Soc.,* **78, 475 (1956).**

⁽²⁰⁾ D. Jambotkar and R. Ketcham, *J.* **Org.** *Chem.,* **48, 2182 (1963).**

MAY 1965 SYNTHESIS OF STILBENES 1475

TABLE **I1**

PHYSICAL CONSTANTS OF CIS-STILBENES

Compd.	B.p., ^a °C, (mm.)	λ_{max}^b m μ (e)	$\Delta \lambda^c$	Infrared, cm. ⁻¹
Stilbene	105-110 (2) $[134 (10)]^d$	278 (10,200)	\cdots	694, 916
4-Methyl-	110-112 (2) $[108-112 (12)^e]$	$278(13,000)$ [281 $(12,000)$ ^o]	\cdot \cdot \cdot	695
4-Methoxy-	$98-100(2)$ [145 (15) ⁷]	$276(11,700)$ [286 (14,000) [*]]	$^{-2}$	699
4-Fluoro-	110-112 $(2)^{g}$	280(10,600)	$^{\rm +2}$	703.913
2-Methoxy-	185-192 (2) $[138-140 (0.1)h]$	280(10,500)	$+2$	696
2-Chloro-	$120-122$ (2) $[118-120 (1.5)^4]$	276 (11, 100)	-2	704
2.4-Dichloro-	$140 - 150(3)^t$	290 (7,500)	$+12$	693
		$\mathbf{r} = \mathbf{r} = \mathbf$		Δ D _a t Δ <i>A</i>

^aLiterature values are in brackets. Values determined in 95% ethanol. Displacement from cis-stilbene. Ref. 34. *e G* Riezebos and E. Havinga, *Rec. trav. chim.*, 80, 446 (1961). ^{*I*}W. H. Brunner and J. Kustatcher, *Monatsh.*, 82, 100 (1951). *P. Anal* Calcd. for C₁₄H₁₁F: C, 84.85; H, 5.55. Found: C, 84.91; H, 5.85. ^h Ref. 7a. ^{*i} Anal.* Calcd. for C₁₄H₁₀Cl₂: C, 67.74; H, 4.06</sup> Found: C, 68.06; H, 4.28.

previously reported to give traces of this olefin.²¹ α -4-Chlorophenyl-4-chlorocinnamic acid gave only trans-4,4'-dichlorostilbene, whereas α -2-chlorophenylcinnamic acid formed about equal amounts of the cis- and trans-stilbenes. These differences in the courses of the decarboxylation of the substituted phenylcinnamic acids have been shown²⁰ to be due to the ready isomerization of the reactive cis-stilbenes under the conditions of the reaction.

Method E.-The Wittig reaction of the yield from benzyltriphenylphosphonium chloride with benzaldehyde in the presence of sodium ethoxide in ethanol has been reported to give nearly equal amounts of cis and trans isomers (see Table 111), and this was con-

TABLE **I11** SYNTHESIS OF STILBENES *via* WITTIG REACTION

Phosphorane	Benzaldehyde	Base	$%$ cis^a
н	н	$Buli-C6H6$	29 ^b
$\mathbf H$	н	t -BuOK	25 ^c
н	н	EtONa	$54^{b} 45^{c}$
н	н	$DMF-EtONa-LiBr$	$81^{b} 53^{c}$
$\mathbf H$	$4-MeO. 2-Cl$	EtONa	0 ^c
н	2.4 -Cl ₂ , 4 -Cl	t -BuOK	0 ^c
н	$4-MeO. 4-NO2$	DMF. etc.	0 ^c
н	4-MeO. 4-HO. 3-HO	EtON ₈	0 ^d
$4-Me$, $4-NO_2$, $3-Br$	н	EtONa	0 ^d
$4-NO2$	$4-MeO$	$BuLi-C_6H_6$	Ue
$4-MeO$	$4-NO2$	$Bul - C6H6$	48 ^o
^{<i>a</i>} Normalized to 100%. 91 e D _{of} 93		^b Ref. 14. ^c Present work.	d Ref.

^{21.} **e** Ref. 23.

firmed in the present work. The use of potassium *t*butoxide in t-butyl alcohol, however, reduced the proportion of cis-stilbene to 25% . A recent publication^{14b} indicates that the addition of lithium bromide to a solution of sodium ethoxide in dimethylformamidebenzene increases the proportion of *cis* isomer (to 81%). However, when lithium bromide, dissolved in dimethylformamide and not prepared in situ, was used here, the increase was small (to 53%).

In our hands the Wittig reaction with 4-methoxyand 2-chlorobenzaldehydes using sodium ethoxide gave only trans-stilbene, as did the reaction employing 4 methoxy- and 4-nitrobenzaldehydes with sodium ethoxide and lithium bromide in dimethylformamide. Reaction of 4-chloro- and **2,4-dichlorobenzaldehyde** in tbutyl alcohol also gave exclusively trans-stilbene. It has been reported that the reactions of 4-methoxy- and **3-** and 4-hydroxybenzaldehydes with phenylniethylenetriphenylphosphorane, and of 4-methyl-, 4-nitro-, and **3-bromophenylmethylenetriphenylphosphorane** with

(21) K. Friedrich and H. G. Henning, **Ber., 99,** 2944 (1959).

benzaldehyde and sodium ethoxide give only trans-stilbenes. **22** However, the over-all yields reported were low in many cases, and the mother liquors were not distilled to isolate any liquid cis-stilbenes, as was done in the present work. A recent publication²³ reports that the reaction of 4-nitrobenzaldehyde with 4-methoxy**phenylmethylenetriphenylphosphorane** gives 48% *cis-*4-nitro-4'-methoxystilbene, whereas only the trans isomer is formed from 4-methoxybenzaldehyde and 4 **nitrophenylmethylenetriphenylphosphorane.** The base used in these reactions was butyllithium, which gives the lowest percentage of cis-stilbene in the case of the unsubstituted components (see Table 111).

Method F.-Wadsworth and Emmons¹⁵ employed sodium hydride in ethylene glycol dimethyl ether (b.p. **83")** for the reaction of diethyl benzylphosphonate with benzaldehyde and found that trans-stilbene was formed exclusively. They suggested that the reaction may involve a direct route leading to trans-stilbene and also proceed via a cyclic intermediate, similar to that originally postulated13 for the Wittig reaction, leading to both cis- and trans-stilbenes. The absence of the cis isomer in the product was explained as due to its isomerization to the trans product at the relatively high temperature (85°) of the reaction. In the present work, using sodium hydride in dimethylformamide-benzene (b.p. ca. 125') only trans-stilbene was again formed, and moreover, cis-stilbene was found not to isomerize to the trans isomer under these conditions. Thus, it appears that the reaction proceeds by the direct mechanism.

The reaction with 2-chloro- and 4-methoxybenzaldehyde was also found to afford the corresponding transstilbenes.

In summary it appears that the best general method for preparing cis-stilbenes is by the decarboxylation of phenylcinnamic acids in quinoline. However, the Wittig reaction or the benzylphosphonate route offer the best methods of directly preparing trans-stilbenes.

Spectra. The structures of the cis- and trans-stilbenes were confirmed by the determination of their spectra. The cis-stilbenes (Table 11) all showed a sharp n.m.r. peak at τ 6.50 \pm 0.1 (in carbon tetrachloride) **.24**

The trans-stilbenes (Table IV) gave a strong characteristic infrared peak at $948-971$ cm.⁻¹ (de Tar and Carpino¹⁹ report 963.4 cm.⁻¹). The *cis*-stilbenes (Table 11) gave a peak of medium intensity at 694-704

⁽²²⁾ J. F. Codington and E. Mosettig, *J.* **Org.** Chem., **17,** 1027 (1952).

⁽²³⁾ R. Ketcham, D. Jambotkar, and L. Martinelli, *ibid.,* **97,** 4666 (1082)

⁽²⁴⁾ Unpublished work with Dr. J. L. Mateos.

Infra-

TABLE IV

PHYSICAL CONSTANTS OF trans-STILBENES

 a Literature values are in parenthesis. b Values determined in 95yo ethanol. *e* Displacement from 296-mp band of *trans*stilbene. ^d Ref. 4a. ^e F. Sacardiglia and T. D. Roberts, *Tetrahedron,* **3,** 197 (1958). *¹ Ref.* 34. *⁹ R. Anschutz, Ber.,* 60B, 1320 (1927). \triangle Ref. 32. *i* Insoluble in carbon disulfide. j Ref. 36. k Ref. 20.

cm.⁻¹ (lit.¹⁹ 780 cm.⁻¹). A peak at ca. 920 cm.^{-119,25} was found to be less characteristic.

The trans-stilbenes showed maxima at $300-350$ $m\mu^2$ $(\epsilon 20,000-30,000)$, and in the cases of stilbene and 4methoxy-, 4-chloro-, and 4-methylstilbene the maxima appeared as a doublet (Table IV). The cis -stilbene absorbed at lower wave lengths **(270-290** mw) and with a lower intensity (10,000-13,000). This *cis-* and $trans-azobenzenes$ also show such differences,²⁶ which are attributable to steric hindrance to coplanarity in the cis compounds. The trans-0-stilbenes absorbed with lower intensities than their para isomers and this is also due to the same effect. \overline{x} Comparison of the intensities of the pairs of para- and ortho-substituted trans-methoxy- and chlorostilbenes gave an angle of deformation (θ) to coplanarity in the *ortho* isomer of 18 and 34[°], respectively (from $\cos^2 \theta = \epsilon \ or \ the \epsilon \$ The corresponding trans-chloroazobenzenes gave θ = **35O.26**

Experimental

Benzoin Method (A). -- Benzoin was prepared from benzaldehyde and potassium cyanide in methanol²⁸ in 80% yield. Similar reaction with 2- and 4-chlorobenzaldehyde gave $2,2'$ - (60%) and 4,4'-dichlorobenzil (55%), which were chromatographed on alumina from benzene-hexane: m.p. 128 and 198', respectively (lit. m.p. 128°_{19} and $195-196^{\circ},$ ³⁰ respectively); light absorption, λ_{max} 258 m μ (ϵ 3100) and λ_{max} 272 (25,900), respectively; no infrared hydroxyl band. No pure compound could be isolated from the reaction with **2,4-dichlorobenzaldehyde.**

Reduction of Benzoin.-The reduction of benzoin with amalgamated zinc powder and hydrochloric acid⁴ gave trans-stilbene, m.p. $116-121^{\circ}$ (lit.^{4a} m.p. 124°). This melting point could not he raised by recrystallization or chromatography on alumina from benzene-hexane.

Reduction of the crude product of the condensation of 4 chlorohenzaldehyde with potassium cyanide gave trans-4,4' dichlorostilbene, m.p. 175° (lit.³⁰ m.p. $175-176^{\circ}$). No product could be isolated from the reduction of the crude reaction products from 2-chloro- and **2,4-dichlorobenzaldehyde.**

The reduction of anisoin (4,4'-dimethoxybenzoin) with amalgamated zinc and hydrochloric acid gave a small yieId of 4,4' dimethoxydiphenylethane, m.p. 121° (lit.³¹ m.p. 125°).

Reduction of anisoin with zinc amalgam in 1:l acetic acid hydrochloric acid, maintaining the temperature below 15° for 2 hr. gave desoxyanisoin: m.p. 108-109" (lit.31 m.p. 109'); **Amax** 225 mp **(c** 22,100), 277 (16,200).

Anal. Calcd. for C₁₆H₁₆O₃: C, 74.98; H, 6.29. Found: C, 74.64; H, 6.30.

The same product was obtained by reducing anisoin with zinc dust in boiling acetic acid.

Following the modified method of Fieser,¹⁸ anisoin (5.2 g .) was warmed on a steam hath, and thionyl chloride (4 ml.) was added. After heating for *5* min. the excess thionyl chloride was distilled *in vacuo*. Petroleum ether (10 ml.) was added and the sample again was evaporated *in vacuo*. The remaining oil was dissolved in ethanol (40 ml.) and sodium borohydride (0.36 g.) was added. After 10 min. zinc dust (2 9.) and acetic acid (4 ml.) were added, and the mixture was refluxed for 1 hr. The product (2.8 g.) was recovered by ether extraction and recrystallized from ethanol, m.p. $109-110^{\circ}$, no depression in mixture melting point with desoxyanisoin.

Direct Phenylacetic Acid Route (D). trans-4-Nitrostilbene.-4-Nitrophenylacetic acid (4.0 g.) and benzaldehyde (2 9.) were refluxed with piperidine (1 ml.) for 3 hr.12 giving the product **(3.0** g.), m.p. 155° from ethanol (lit.³² m.p. $154-155^{\circ}$).

No stilbenes could be isolated from similar reactions of benzaldehyde with phenylacetic acid or 2-nitro-, 4-chloro-, and 2 chlorophenylacetic acid, or of 2-chlorobenzaldehyde with 2-chlorophenylacetic acid.

 Via Phenylcinnamic Acids. cis -Stilbene. --Phenylcinnamic acid (9 g.) was heated at 210-220° for 1.25 hr. with copper chro-
mite²⁸ (4 g.) in practical grade quinoline (56 ml.).⁸⁴ The mixture was immediately cooled, poured into 10% hydrochloric acid (200 ml.), and extracted with ether. The ether was washed several times with 10% hydrochloric acid, then with 20% hydrochloric acid, water, and 10% sodium carbonate, and dried. Distillation gave cis-stilbene (3 g.), b.p. $108-110^{\circ}$ at 2 mm. (lit.⁷⁸ b.p. 134° at 10 mm.), and trans-stilbene $(1 g.), m.p. 124^{\circ}$ (lit.⁴⁰ m.p. 124°).

Decarboxylation of phenylcinnamic acid (9 g.) in collidine with copper chromite at 175° for 18 hr. gave trans-stilbene (3.4 g.), m.p. 124 $^{\circ}$, and cis-stilbene (0.8 g.), b.p. 110–112 $^{\circ}$ at 2 mm. No decarboxylation resulted in N,N-dimethylaniline (b.p. 192") for 20 hr.

Decarboxylation of *7* g. of acid occurred in refluxing dimethyl sulfoxide (b.p. 120") for 20 hr. Water was added, and the product was extracted with ether. Chromatography on alumina from heptane and heptane-benzene gave trans-stilbene (1.1 g.), m.p. 122-123', and latter oily fractions which were distilled to give czs-stilbene (1.2 g.) , b.p. 170-180° at 15 mm. cis-Stilbene (2.0 g.) 9.) was recovered unchanged (by infrared spectrum) (1.8 g.) after refluxing for 16 hr. in collidine with copper chromite.

A number of trans- α -phenylcinnamic acids were prepared by condensation of commercially available phenylacetic acids and benzaldehydes in acetic anhydride and triethylamine,³³ and were recrystallized from benzene and hexane. The decarboxylation in quinoline with copper chromite of α -4-methyl-, α -4-fluoro-, and **a-2-methoxyphenylcinnamic** acids gave only the corresponding cis-stilbenes (see Table 11).

Decarboxylation of α -4-methoxyphenylcinnamic acid (3 g.) in collidine (19 ml.) with copper chromite (1.2 9.) for 18 hr. gave trans-4-methoxystilbene (1.8 g., 69%), m.p. 136° (lit.³⁴ m.p. 136-137°), and cis-4-methoxystilbene (0.3 g., 10%), b.p. 98° at 2 mm . (lit.³⁵ b.p. 145 $^{\circ}$ at 15 mm.).

a-2-Chlorophenylcinnamic acid **(3** g.) similarly gave trans-2 chlorostilbene (0.8 g., 32Yo), m.p. 39-40' **(lit.36** m.p. 39-40'), and cis-2-chlorostilbene (1.0 g., 40%), b.p. 120-122° at 2 mm., (lit.³⁶ b.p. 118-120° at 1.5 mm.). α -4-Chlorophenylcinnamic acid similarly afforded trans-4-chlorostilbene (70%), m.p. 128° (lit.³⁴) m.p. 129°), and cis-4-chlorostilbene (5%), b.p. (bath) 90° at 0.05 mm. α -4-Chlorophenyl-4-chlorocinnamic acid gave trans-4,4'di-chlorostilbene (70%) , m.p. 175-176° (lit.³⁰ m.p. 175-176°). **a-2,4-Dichlorophenylcinnamic** acid, however, gave only cis-2,4 dichlorostilbene.

⁽²⁵⁾ *Cf.* **W. Luttke,** *Ann.,* **669, 184 (1963).**

⁽²⁶⁾ P. H. Gore and *0.* **H. Wheeler,** *J. Org. Chem.,* **46, 3295 (1961).**

⁽²⁷⁾ W. H. **Laarhoven, R.** J. F. **Nivard, and** E. **Havinga,** *Ree. trau. chim.,* **78, 1153 (1960).**

⁽²⁸⁾ A. I. **Vogel. "Practical Organic Chemistry," Longmans, Green and Co.. London, 1948.**

⁽²⁹⁾ H. H. **Hodgson and W. Rosenberg,** *J. Chem. Soc.,* **14 (1930). (30) M. Gomberg and** F. J. **Van Naths,** *J. Am. Chem. Soc.,* **61, 2238 (1929).**

⁽³¹⁾ J. **S. Buck and** S. *S.* **Jenkins, ibid., 61, 2163 (1929).**

⁽³²⁾ V. Baliah and K. Ganapathy. *J.* Indian *Chem. SOC.,* **91, 333 (1955). (33) R.** E. **Buckles and E. A. Hausman, "Organic Syntheses," Coll. Vol.**

IV, John Wiley and Sons, Inc.. New York. N. Y., 1962, p. 777. (34) F. Bergman, J. **Weizman and D. Schapiro,** *J. Org. Cham.. 8,* **408**

^{(1944).} (35) W. H. Brunner and J. Kustatcher. *Monatsh.,* **92, 100 (1951).**

⁽³⁶⁾ D. F. **De Tar and Y.** W. **Chu,** *1.* **Am.** *Chem. Soe., 77,* **4410 (1955).**

Via Meerwein Reaction. trans-4,4'-Dinitrostilbene.--4-Nitroaniline (0.6 g.) was diazotized in 25% hydrochloric acid (11 ml.) and ice (10 \mathbf{g} .) at 5° with sodium acetate (0.25 \mathbf{g} .) in water (3 ml.) and poured into 4-nitrocinnamic acid (0.8 9.) and anhydrous sodium acetate (0.08 g.) in acetone (40 ml.). An aqueous solution of **0.15** *hl* cupric chloride (2 ml.) was added, and the mixture was kept at $14-17^{\circ}$ for 1.5 hr. Evaporation of the acetone gave **trans-4,4'-dinitrostilbene** (0.4 g., 397,), m.p. 282' (from acetic acid) (lit.³⁷ m.p. 282°).

Via Wittig Reaction.-Benzyltriphenylphosphonium chloride, m.p. 315° (lit.³⁸ m.p. $317-318^{\circ}$), was prepared in nearly theoretical yield from benzyl chloride and triphenylphosphine.

cis- and **trans-Stilbene.-Benzyltriphenylphosphonium** chloride (9 g.) was added to a solution of sodium (0.46 g.) in anhydrous ethanol (50 ml.) in a nitrogen atmosphere. The resulting orange solution was treated with benzaldehyde (2.5 ml.) and stirred for 50 hr.^{13b} The solution was poured into 25% hydrobromic acid (50 ml.), precipitating trans-stilbene, m.p. 123-124° (2.1) g_{\cdot} , 55% yield.) The filtrate was evaporated at reduced pressure and extracted with ether. The ether extract was washed with 5% sodium bisulfite solution and evaporated. The residue was treated with petroleum ether to precipitate triphenylphosphine oxide (4 g.), m.p. 151-152° (lit.³⁹ m.p. 155°). Evaporation of the organic solution and distillation of the residue gave cis-stilbene, 1.8 g. (45%) , b.p. 105-110° at 2 mm. (lit.^{8a} b.p. 134° at 10 mm.).

A similar reaction with benzyltriphenylphosphonium chloride (9 *9.)* and 4-methoxybenzaldehyde (4.1 g.) gave only trans-4 methoxystilbene $(4.1 \text{ g.}), \text{ m.p. } 136^{\circ} \text{ (lit.}4 \text{ m.p. } 136-137^{\circ})$ evaporation of the petroleum ether extract gave no liquid fraction.

Reaction of benzyltriphenylphosphonium chloride (9 **g.)** with 2-chlorobenzaldehyde (3.2 9.) also gave only trans-2-chlorostilbene $(3.6 \text{ g.}), \text{ m.p. } 39-40^{\circ}$ (lit.³⁶ m.p. $39-40^{\circ}$).

trans-Stilbene.-Benzyltriphenylphosphonium chloride (9 g.) was added to potassium (0.85 g.) in anhydrous t-butyl alcohol (80 ml.) in a nitrogen atmosphere. Benzaldehyde (2.5 ml.) was added, the reaction was stirred for 54 hr., and worked up as above, giving trans-stilbene (3.0 g., 75%), m.p. 124°, and cis-stilbene, b.p. 110-115° at 2 mm. $(1.0 \text{ g.}, 25\%)$.

Reaction of benzyltriphenylphosphonium chloride (9 9.) with **2,4-dichlorobenzaldehyde** (3.0 9.) under the same conditions gave **trans-2,4-dichlorostilbene** (4.6 g.), m.p. 76" (lit.7b m.p. 71').

A similar reaction with 4-chlorobenzaldehyde (2.8 g.) gave trans-4-chlorostilbene (4.0 g.) , m.p. 129° (lit.⁴¹ m.p. 129°).

(37) P. Ruggli and F. Lang, *Helu. Chim. Acta,* **21, 50 (1938).**

(38) K. Friedrich and H. *G.* Henning, Ber., **94, 2756 (1959).**

(39) W. Kuchen and H. Buckwald, *ibid..* **01, 2296 (1958).**

(40) D. Y. Curtin, A. Bradley, and Y. *G.* Hendrickson, *J. Am. Chem. Soc.,* **78, 4064 (1956).**

(41) R. Anschuta, *Ber.,* **60B, 1320 (1927).**

With Lithium Bromide.-Reaction of benzyltriphenylphosphonium chloride (10 g.) in anhydrous ethanol (55 ml.) containing sodium (0.51 g.) in the presence of lithium bromide $(2.2 \text{ g.})^{14b}$ added in N,N-dimethylformamide (7 mi.), with benzaldehyde $(3.4\,\mathrm{g}$.) as above, gave trans-stilbene, m.p. 124° (2.3 g., 45%), and cis-stilbene, b.p. $108-114^{\circ}$ at 2 mm. (2.8 g., 50%).

The reaction of benzyltriphenylphosphonium chloride (9 g.) with 4-methoxybenzaldehyde $(3.2 g.)$ under these conditions gave $trans-4-methoxystilbene (3.9 g.), m.p. 136° (lit. ⁴⁰ m.p. 136–137°),$ and with 4-nitrobenzaldehyde (3.8 g.) gave trans-4-nitrostilbene $(4.5 g.), m.p. 155° (lit.³² m.p. 155°).$

Diethyl Benzylphosphonate.-Triethylphosphite (40 g.) and benzyl chloride (30 g.) were refluxed for 24 hr., giving diethyl benzylphosphonate⁴² (50 g.), b.p. 170–174° at 15 mm. (lit.⁴² b.p. 153-154' at 11 mm.).

trans-Stilbene.--Diethyl benzylphosphite (14 ml.) and benzaldehyde (7.5 ml.) was added to a solution of sodium hydride (4 g., 25% in mineral oil)¹⁵ in N,N-dimethylformamide (40 ml.) and benzene (80 ml.). The solution waa refluxed for 1 hr., and then cooled and diluted with water. The organic layer was separated, the aqueous phase was extracted with ether, and the combined organic extracts were dried and evaporated, giving transstilbene (10.2 g., 90%), m.p. 122°, raised to m.p. 124° on recrystallization from ethanol (lit.^{4a} m.p. 124°).

 cis -Stilbene (1.5 g.) was refluxed with sodium hydride in dimethylformainide-benzene for 1 hr . and waa recovered unchanged (by infrared) in 87% yield.

Diethyl benzylphosphonate *(5* **ml.)** and 2-chlorobenzaldehyde $(3 g.)$ treated as above gave trans-2-chlorostilbene $(3.8 g.)$, m.p. 39-40" (lit.36 m.p. 39-40'), and reaction with 4-methoxybenzaldehyde (3 g.) gave trans-4-methoxystilbene (4.0 g.), m.p. 136° (lit. **40** m .p. 136').

Spectra.-The ultraviolet spectra were determined in solution of purified 95% ethanol using a Beckman D. U. spectrometer. The infrared spectra were determined in solutions of Spectrograde carbon tetrachloride and carbon disulfide using a Baird-Atomic, Model KM-1, spectrometer with a sodium chloride prism. The nuclear magnetic resonance spectra were determined in solution of carbon tetrachloride using a Varian A-60 spectrometer.

Acknowledgment.-This work was supported in part by a National Science Foundation Undergraduate Research Participation grant. The Metal Thermite Corporation supplied a sample of triphenylphosphine.

(42) B. A. Arbuzov and N. P. Bogonotaeva, *Sb. Statei Obehch. Khim. Akad.* **Nauk.** *SSSR,* **4, 114 (1953).**